Using Artificial Neural Network andLeudeking-Piret Model in the Kinetic Modelingof Microbial Production of Poly-β-Hydroxybutyrate
نویسنده
چکیده
Poly-β-hydroxybutyrate (PHB) is one of the most famous biopolymers that has various applications in production of biodegradable carriers. The most important strategy for enhancing efficiency in production process and reducing the price of PHB, is the accurate expression of kinetic model of products formation and parameters that are effective on it, such as Dry Cell Weight (DCW) and substrate consumption. Considering the high capabilities of artificial neural networks in modeling and simulation of non-linear systems such as biological and chemical industries that mainly are multivariable systems, kinetic modeling of microbial production of PHB that is a complex and non-linear biological process, the three layers perceptron neural network model was used in this study. Artificial neural network educates itself and finds the hidden laws behind the data with mapping based on experimental data, of dry cell weight, substrate concentration as input and PHB concentration as output. For training the network, a series of experimental data for PHB production from Hydrogenophaga Pseudoflava by glucose carbon source was used. After training the network, two other experimental data sets that have not intervened in the network education, including dry cell concentration and substrate concentration were applied as inputs to the network, and PHB concentration was predicted by the network. Comparison of predicted data by network and experimental data, indicated a high precision predicted for both fructose and whey carbon sources. Also in present study for better understanding of the ability of neural network in modeling of biological processes, microbial production kinetic of PHB by Leudeking-Piret experimental equation was modeled. The Observed result indicated an accurate prediction of PHB concentration by artificial neural network higher than LeudekingPiret model. Keywords—Kinetic Modeling, Poly-β-Hydroxybutyrate (PHB), Hydrogenophaga Pseudoflava, Artificial Neural Network, Leudeking-Piret
منابع مشابه
OLY β-hydroxybutyrate (PHB) is a polyester belonging to polyhydroxyalkanoics acids family that is synthesized by a wide variety of different microorganism under stress condition
Poly-β-hydroxybutyrate (PHB) is one of the most famous biopolymers that has various applications in production of biodegradable carriers. The most important strategy for enhancing efficiency in production process and reducing the price of PHB, is the accurate expression of kinetic model of products formation and parameters that are effective on it, such as Dry Cell Weight (DCW) and substrate co...
متن کاملSimulation and Model Validation of Batch PHB Production Process Using Ralstonia eutropha
Mathematical modeling and simulation of microbial Polyhydroxybutyrate (PHB) production process is beneficial for optimization, design, and control purposes. In this study a batch model developed by Mulchandani et al., [1] was used to simulate the process in MATLAB environment. It was revealed that the kinetic model parameters were estimated off the optimal or at a local optimal point. There...
متن کاملAn Artificial Neural Network Model for Prediction of the Operational Parameters of Centrifugal Compressors: An Alternative Comparison Method for Regression
Nowadays, centrifugal compressors are commonly used in the oil and gas industry, particularly in the energy transmission facilities just like a gas pipeline stations. Therefore, these machines with different operational circumstances and thermodynamic characteristics are to be exploited according to the operational necessities. Generally, the most important operational parameters of a gas pipel...
متن کاملModeling and Optimization of β-Cyclodextrin Production by Bacillus licheniformis using Artiïcial Neural Network and Genetic Algorithm
Background: The complexity of the fermentation processes is mainly due to the complex nature of the biological systems which follow the life in a non-linear manner. Joined performance of artificial neural network (ANN) and genetic algorithm (GA) in finding optimal solutions in experimentation has found to be superior compared to the statistical methods. Range of applications of β-cyclodextrin (...
متن کاملPredicting Force in Single Point Incremental Forming by Using Artificial Neural Network
In this study, an artificial neural network was used to predict the minimum force required to single point incremental forming (SPIF) of thin sheets of Aluminium AA3003-O and calamine brass Cu67Zn33 alloy. Accordingly, the parameters for processing, i.e., step depth, the feed rate of the tool, spindle speed, wall angle, thickness of metal sheets and type of material were selected as input and t...
متن کامل